Code: 19ME3403
II B.Tech - II Semester - Regular Examinations - AUGUST 2021

FLUID MECHANICS
 (MECHANICAL ENGINEERING)

Duration: 3 hours
Max. Marks: 70
Note: 1. This question paper contains two Parts A and B.
2. Part-A contains 5 short answer questions. Each Question carries 2 Marks.
3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
4. All parts of Question paper must be answered in one place

PART - A

1. a) Define Dynamic viscosity and Kinematic viscosity.
b) Explain Meta centric height.
c) Explain Euler's equation.
d) Differentiate between rectangular notch and triangular notch.
e) Describe dynamic similarity.

PART - B
 UNIT - I

2. a) Calculate the capillary effect in mm in a glass tube 36 M mm in diameter when immersed in (a) water (b) mercury. Both the liquids are at $20^{\circ} \mathrm{C}$ and the values of the surface tensions for water and mercury at $20^{\circ} \mathrm{C}$ in contact with air are respectively $0.0736 \mathrm{~N} / \mathrm{m}$ and 0.51 N / m. Contact angle for water $=0^{\circ}$ and for mercury $=$ 130°.
b) If the equation of a velocity profile over a plate is $v=$ 6 M $2 \mathrm{y}^{2 / 3}$; in which v is the velocity in m / s at a distance of y metres above the plate, determine the shear stress at $\mathrm{y}=$ 0 and $y=0.075 \mathrm{~m}$. Given $\mu=8.35$ poise.

OR
3. a) The left leg of a U-tube mercury manometer is connected to a pipe-line conveying water, the level of mercury in the leg being 0.6 m below the center of pipe-line, and the right leg is open to atmosphere. The level of mercury in the right leg is 0.45 m above that in the left leg and the space above mercury in the right leg contains Benzene (specific gravity 0.88) to a height of 0.3 m . Find the pressure in the pipe.

b) Briefly explain the principle employed in the manometers used for the measurement of pressure.

UNIT - II

4. a) Derive the equation of center of pressure for vertical plane surfaces.
b) Determine the total pressure and center of pressure on an inclined surface with a neat sketch, assume that the angle of inclination is 45 degrees.

OR

5. a) Describe the stability of submerged and floating bodies.
b) A solid cylinder of diameter 4.0 m has a height of 4.0 m .

Find the meta-centric height of the cylinder if the specific gravity of the material of cylinder $=0.6$ and it is floating in water with its axis vertical. State whether the equilibrium is stable or unstable.

UNIT-III

6. a) Derive the Bernoulli's equation from the principle of 6 M conservation of energy.
b) A bend in pipeline conveying water gradually reduces from 0.6 m to 0.3 m diameter and deflects the flow through angle of 60°. At the larger end the gage pressure is $171.675 \mathrm{kN} / \mathrm{m}^{2}$. Determine the magnitude and direction of the force exerted on the bend, (a) when there is no flow, (b) when the flow is 876 litres/s.

OR

7. a) Describe Reynold's experiment with a neat sketch. 6 M
b) Water at a pressure of $294.3 \mathrm{kN} / \mathrm{m}^{2}$ flows through a 6 M horizontal pipe of 100 mm diameter with a velocity of 2 m / s. If the diameter of the pipe gradually reduces to 50 mm what is the axial force on the pipe assuming no loss of energy.

UNIT - IV

8. a) Explain the working of an Orifice meter with a neat sketch.
b) A venturi meter is to be fitted in a pipe 0.25 m diameter 6 M where the pressure head is 7.6 m of flowing liquid and the maximum flow is $8.1 \mathrm{~m}^{3}$ per minute. Find the least
diameter of the throat to ensure that the pressure head does not become negative. Take $\mathrm{K}=0.96$.

OR
9. a) Derive the equation of force exerted by a fluid jet on a inclined vane.
b) Derive the equation of discharge of rectangular notch.

UNIT - V

10. a) Find the form of the equation for discharge Q through a sharp-edged triangular notch assuming Q depends on the central angle α of the notch, head H, gravitational acceleration g and on the density ρ, viscosity μ and surface tension σ of the fluid.
b) Describe the procedure of dimensional analysis by using Bucking Ham's pi theorem.

OR

11. a) List all the variables that may influence the motion of a moving body fully submerged in a fluid, and by dimensional analysis derive an expression for resistance of its motion.
b) Assuming that the rate of discharge Q of a centrifugal pump is dependent upon the mass density ρ of fluid, pump speed N (rpm), the diameter of impeller D , the pressure p and the viscosity of fluid μ, show using the Buckingham's π-theorem that it can be represented by

$$
Q=\left(N D^{3}\right) \phi\left[\left(\frac{g H}{N^{2} D^{2}}\right),\left(\frac{v}{N D^{2}}\right)\right]
$$

where $H=$ head and $v=$ kinematic viscosity of the fluid.

